Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter
نویسندگان
چکیده
Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein). We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α) enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs) characterized by the consensus sequence 5'-GCGTG-3' at -132 bp(HRE1) and at -662 bp(HRE2) relative to transcription start site (TSS). Site-directed mutagenesis of HRE1(-132) but not HRE2(-662) abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132) but not HRE2(-662) under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132) and explains the role of N-WASP in hypoxia induced invadopodia formation.
منابع مشابه
Translocation of N-WASP by nuclear localization and export signals into the nucleus modulates expression of HSP90.
N-WASP regulates the actin cytoskeleton through activation of the Arp2/3 complex. N-WASP localizes at the cell periphery, where it controls actin polymerization downstream of signal molecules such as adapter proteins, Cdc42, Src family kinases, and phosphoinositides. N-WASP also localizes in the nucleus; however, the role of N-WASP in the nucleus is unclear. Here, we show that localization of N...
متن کاملAn alternative bacterial expression system using Bacillus pumilus SG2 chitinase promoter
Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus spe...
متن کاملCdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP.
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc(gamma) receptor (Fc(gamma)R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA...
متن کاملCdc42 Regulates Fc Receptor-mediated Phagocytosis through the Activation and Phosphorylation of Wiskott-Aldrich Syndrome Protein (WASP) and Neural-WASP
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc receptor (Fc R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated int...
متن کاملDyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). ...
متن کامل